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Tailored Twist-Flap Coupling

• Tailored twist-flap coupling can be used to shed 
transient loads, thereby reducing fatigue 

• Allow an increase in rotor diameter
• Increased Energy Capture
• Value of increased energy capture exceeds cost of 

implementing coupling
• Reduction in the cost of energy
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Wetzel Engineering 
Twist-Flap Coupled Blade Studies

•3-m Blades for a 6-kW Turbine
•USDOE Distributed Wind Generation Contract

•9-m Blades for Sandia’s 115-kW LIST Turbine
•Subcontractor to Wichita State University

•34/37/39-m Blades for GE Wind’s 1.5-MW Turbine
•USDOE STTR Contract
•Subcontractor to GE Wind (NGT Program)
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Normal Operation
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High-Speed Gust
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High-Speed Gust: Pitch Regulation
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High-Speed Gust: Pitch Regulation

• Active Pitch Control will always 
experience lag
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Lift

DragResultant Force
On Blade

High-Speed Gust: Twist-Flap Coupling

• Active Pitch Control will always 
experience lag
• Passive flap-induced twist will 

always respond faster than an 
active pitch system
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Comment on the Governing Equations
The Common Formulation of Twist-Flap Coupling Used 

in Recent Years is Incorrect

Inverted, this yields
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xWhen T=0, then which is incorrect!

It can be shown that the classic, well known relationship

EI
M x

x =κ

is always true, even when coupling is present
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Comment on the Governing Equations
Correct Formulation

Inverted, this yields
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When T=0, then which is Correct!
EI
M x

x =κ

Previous Conclusions that Twist-Flap Coupling Introduces an  
Inherent flapwise softening due to the 1-α2 term are incorrect.

No such softening occurs.
Rotating axial fibers will obviously reduce the axial stiffness, but no 

additional softening occurs due to coupling.
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Comment on the Governing Equations

We could use a formulation which
avoids the use of EI, GJ, or g
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This is essentially what we do when we build the 
stiffness matrix in ADAMS from ANSYS results

We calculate the K terms from ANSYS and plug them 
into ADAMS

The error is in how we relate the K terms to EI, GJ, & g
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If you use the incorrect formulation consistently 
between models (e.g., ANSYS & ADAMS), you will 
obtain consistent and correct answers in terms of 

deflections, dynamics, etc.
That is, Two Wrongs Seem to Make it Right!

Incorrectly putting the 1-α2 term in the Denominator of 
the Flexibility Matrix Results in an Overestimation of 

EI by the factor of approximately α2.  However, putting 
the 1- α2 term in the denominator overestimates the 
flexure resulting from a given EI by the same factor!

Comment on the Governing Equations
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However, if you calculate E and I from a cross-
sectional equivalent beam property model, you must 

use the correct formulation of the governing equations 
in order to get the correct answer

Similarly, if you hand EI data calculated using the 
incorrect formulation to someone using the classic, 
correct definition of EI, they will obtain a different, 

inconsistent, and incorrect answer.

This problem needs to be corrected.

Comment on the Governing Equations
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Load Trimming due to Coupling 
actually permits flapwise 
softening of the blade without 
an increase in tip deflection.

Substantial Reductions in 
Flapwise Fatigue can be 
Achieved with Coupling

-0.397α + 0.970
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MW Pitch-Regulated Turbine

Thanks to GE Wind & Windward Engineering 
for their Support

Influence of Coupling on Dynamics
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37-m Blade Structural Design Studies
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Influence of Coupling on Cost & Fatigue
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Influence of Coupling on COE
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Influence of Carbon on COE
No Coupling
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Influence of Coupling on Loads
Pitch-Regulated Design Example
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9.2-m Blade Flapwise Fatigue
Stall-Regulated Turbine (Sandia LIST)

86%

88%

90%

92%

94%

96%

98%

100%

102%

5 7 9 11 13 15 17 19 21 23 Total

Wind Speed Bin [m/s]

WSU 9.2c
WSU 9.2TBC10
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WS9.2c is an Uncoupled Carbon/Glass Hybrid Blade
WSU9.2TBC10 is a Twist-Flap Coupled Carbon/Glass Hybrid Blade
NPS9.2 is the Baseline, Uncoupled All-Glass Blade
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Peak Carbon Fiber Strain, 9.2-m Blades

Coupled Blade

Max 2301 µstrain

52% Margin on Static Axial Strain

65% Margin on Axial Strain Fatigue

Uncoupled Blade

Max 3444 µstrain

2% Margin on Static Axial Strain

8% Margin on Axial Strain Fatigue
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Shear Stress, 9.2-m Coupled Blade
20° Carbon Fibers

32.2 MPa Peak Shear Stress

8% Margin on Static Shear Strength

Shear Fatigue Allowable is Unknown

0° Glass Fibers

21.6 MPa Peak Shear Stress

-7% Margin on Static Shear Strength

Shear Fatigue Allowable is Unknown
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Twist-Flap Coupled Blade Studies
Conclusions to Date

•Cost of energy benefits seem to improve with 
increasing coupling – no interim sweet spot has 
been found
•Shear strength and fatigue issues will probably be 

the key design challenge
•Coupling in the spar caps and skins is preferable 

to confining it to either region
•Coupling in the spar caps only is preferable to 

coupling in the skins only
•Must maintain some ±45° material in the skins
•Benefits of coupling for stall-regulated turbines is 

questionable


